
By ONUR ÖZKAN
<contact@onurozkan.dev>

Konnektor: Connection Protocol for Ensuring
Peer Uniqueness in Decentralized P2P Networks

ABSTRACT Konnektor is a connection protocol designed to solve the challenge of
managing unique peers within distributed peer-to-peer networks. By prioritizing network
integrity and efficiency, Konnektor offers a comprehensive solution that safeguards
against the spread of duplicate peers while optimizing resource utilization. This paper
provides a detailed explanation of the protocol's key components, including peer
addressing, connection initialization, detecting peer duplications and mitigation
strategies against potential security threats.

1) INTRODUCTION

In decentralized networks, ensuring the uniqueness of each peer poses significant
challenges. Let's consider an online multiplayer game. As the each peer corresponds to a
user/player, maintaining the uniqueness of network peers becomes crucial for the game.
Unlike centralized architectures where ensuring uniqueness is straightforward through
querying centralized storage, decentralized architechtures lack such simplicity. This is
because in decentralized networks each joining peer becomes part of the decision-making
mechanism.

In order to keep a network peers distinct and unique, every new peer trying to join needs
approval from others already in the network. However, if one peer joins and then refuses
all other connection attempts, it can stop the network from growing. Furthermore, since
ensuring uniqueness requires conducting network-wide checks when peers attempt to
join, if a peer simultaneously makes multiple joining attempts, it can put pressure on the
network's hardware resources and slow down overall operations performance.

Konnektor protocol is designed to solve these and numerous other problems. It requires
peers to verify their identities with signed messages before joining the network.
Connection establishment attempts are handled asynchronously and the connecting peer
is tasked with performing CPU-intensive operations for a set duration, thus safeguarding
the network against brute force attacks. Moreover, to prevent malicious peers from
unconditionally rejecting all connection attempts, Konnektor requires peers claiming
existing connections to the network to prove their authenticity through signed messages
from the already connected peers.

mailto:contact@onurozkan.dev
af://n8
af://n12

2) PROTOCOL DESCRIPTION AND DETAILS

The design of Konnektor protocol includes digital signature, ConnectionBook, Entrypoint,
and the following events:

ConnectionInit: Sent by peer (X) when it wants to connect another peer (Y) for the first
time.

AlreadyConnected: Sent by peers claiming that they are already connected with a
signature proving the claimed peer is indeed connected.

NewPeer: Peers receiving ConnectionInit event notify the network after certain
validations by sending NewPeer event.

ConnectionRequirement: Peers receiving the ConnectionInit request increase the cost
of this operation by using a proof-of-work algorithm, which can essentially be any type of
proof-of-work function (such as the SHA256-based one used in Bitcoin) as desired by the
implementer of this protocol. This ensures that peers attempting to spam or abuse
ConnectionInit will likely inflict more harm upon themselves than upon the target peers.

ConnectionRequirementResponse: Peers receiving the ConnectionRequirement event
respond with this event after performing the expected computing task.

KeepAlive: Peers send this event to each other at regular intervals to detect
disconnections and timeouts. This can also be used as proof in the AlreadyConnected
event.

Through the integration of these elements, Konnektor aims to guarantee the network's
uniqueness and integrity.

2.1) Data Signing (Digital Signatures)

Konnektor protocol uses digital signatures in many stages to determine whether peers are
impersonating other peers and whether the data they send is generated by themselves.

Any algorithm (preferably Ed25519 for speed and efficiency) that generates digital
signatures and can be verified by public keys can be used with the Konnektor protocol.
Konnektor uses public keys to define peer addresses, so when peers receive events they
can verify the signature simply by using the sender address.

2.2) ConnectionBook

ConnectionBook is a thread-safe key-value structure for Konnektor protocol designed to
securely manage information about connected peers. Using this peers keep track of events
sent to each other to determine which peers they are connected to or in the process of
connecting.

af://n12
af://n21
af://n24

lock the access drop expired entries

read operation

write operation

Fig. 1: Overview of the execution flow of each ConnectionBook operation.

It utilizes timestamps for expiration to detect peer disconnections and timeouts. With
each read/write operation, it checks the timestamp values of all registered peers and
removes outdated entries before processing any operations. This ensures that all
operations are performed on the most up-to-date data.

For each peer, ConnectionBook stores informations in the following format:

Key: Address of the peer.

Value:

status: Represents the current connection status, which can be one of
the following:

"Connected": Indicates that this peer is currently connected
to us.

"WantsToConnect": Used when peers initiated connection
requests (with "ConnectionInit" event) to us, transitioning to
"Connected" upon successful validation.

"Connecting": Used when we are initiating connection
request (with "ConnectionInit" event), transitioning to
"Connected" upon receipt of a KeepAlive event (which is sent
after successful validation from the target peer).

last_event: Contains the complete payload of the incoming request,
including request signature and timestamp. Refer to chapter 2.3 for
additional context.

connected_at (null if status isn't "Connected"): Timestamp indicating
the peer's connected time.

For example, if we assume that peer X receives an event from peer Y, the operation on
ConnectionBook for peer X would be as follows:

0. Access Lock & Expired Entries: Before proceeding with any operation, it's
imporant to lock the access to the ConnectionBook to prevent data race
conditions. This ensures that multiple threads or processes do not interfere with
each other on read/write operations. After obtaining the lock, scan all entries
and remove outdated ones by checking the timestamp field within the
last_event field based on predefined/configured timeout limits for each status.

1. Registration Check: Check if peer Y is registered in ConnectionBook.

2. Upsert Entry: If peer Y is registered, update last_event; if not, create a new
entry.

2.3) The Entrypoint

This is the entry point of Konnektor protocol. Two things are checked in the entrypoint.
Firstly, the integrity of the data with the sending peer is ensured, meaning it verifies that
the data was indeed generated and sent by the sending peer. Secondly, it mitigates
potential attacks (especially against resource attacks) using a rate limiter.

Each incoming event/request to the Entrypoint must stick to the following structure:

payload: the actual payload of the request
"actual payload" means the data intended to be sent in the request is stored

within this field. The root object contains only the timestamp, signature, and
payload; it does not include any other data.

timestamp: UNIX timestamp in milliseconds
This value is used to determine that incoming requests are recently generated

valid requests.

signature: the signed version of timestamp and payload (this value is used to
determine that incoming requests are generated from the sender and not copied
from other peers)

This value is used to determine that incoming requests are generated from the
sender and not copied from other peers.

Requests that do not comply with this format will be rejected from Entrypoint.

af://n57

Exceeded

Not exceeded

Valid

Not valid

VerifiedNot verified

Arrival of event/request

Check rate limit

Validate timestamp

Verify signature

Reject NextStage

Fig. 2: Overview of how Entrypoint validates events.

1. Arrival of Event/Request: Incoming data/request is received by the
Entrypoint.

2. Rate-Limit: Using a rate-limiting algorithm (various methods can be preferred
here; for example, expirable hashmaps can be a suitable choice in terms of both
effectiveness and lightweightness), it checks whether the sending peer has
reached the rate limit, and if so, the request is rejected. The limit can be
dynamically managed depending on the peer status (e.g., smaller limit can be
used for peers that are not in the ConnectionBook with "Connected" status).

3. Timestamp Validation: Checks if the timestamp within the request is valid
based on predefined/configured limitation. In other words, we verify that the
timestamp is neither in the future nor in the past. If it's not valid, the request is
rejected.

The reason for doing this is that we don't want peers to repeatedly use one
signed payload indefinitely. This mechanism ensures signatures will expire at some
point based on the predefined/configured limit on the receiver side.

4. Signature Verification: The signature within the request is checked. If the
signature hash doesn't match the address of the peer, timestamp and payload of
the request that means the peer is trying to impersonate another peer. If that's
the case, request is rejected.

If the request successfully passes all the checks outlined above, it proceeds to the next
stage.

af://n80

Peer:X

send it send it send it

create payload

and timestamp

sign it

Peer:Y Peer:Z Peer:T

Fig. 3: Overview of how a peer initiates connection establishment with other peers.

2.4) Sending ConnectionInit: Initiating Connections with Other
Peers

This is the initial stage of the Konnektor protocol for establishing connections between
peers.

Each ConnectionInit request contains the following fields:

payload:
- target_peers: Addresses of the peers to connect to.

timestamp: Current UNIX timestamp in milliseconds.

signature: The signed version of the timestamp and payload.

Please note that we only require the target_peers field for the ConnectionInit event.
However, timestamp, signature, and payload fields are necessary for each request
for Entrypoint validations.

When a peer wishes to connect to a network, they must follow these steps:

1. Preparing ConnectionInit Payload: Initially, a payload for the ConnectionInit
request is generated

2. Sending ConnectionInit: Once the payload for ConnectionInit is generated
according to the above format, it is then sent to all peers within the
target_peers and each of these addresses will be registered into the
ConnectionBook with the "Connecting" status.

With the completion of the above steps, the initial connection phase for peers listed in
the target_peers is finalized. These peers are expected to verify the received
ConnectionInit event and respond by sending back ConnectionRequirement event
(refer to chapter 2.5 to see how it's done).

af://n80
af://n101

Valid

Not valid

Does existDoes not exist

Entrypoint

Validate target peers

Does already exist in ConnectionBook?

Add to ConnectionBook

Notify the network

Wait for X milliseconds

Generate random bytes

Send ConnectionRequirement

Reject the peer

Fig. 4: Overview of how a peer handles a ConnectionInit event upon receiving it.

2.5) Receiving ConnectionInit Events

Peers understand that there is a peer attempting to connect to them upon receiving the
ConnectionInit event. In this case, these peers perform certain checks to verify the
validity of the sender peer and payload in the incoming request.

0. Entrypoint

1. Validating Target Peers: If our address is not included in the target_peers of
the ConnectionInit payload, it indicates an invalid request and the process
ends here (simply by ignoring it).

af://n101

2. Check for Existing Peer in ConnectionBook: If the requesting peer already
exists in the ConnectionBook, the connection request is rejected, and an
AlreadyConnected (chapter 2.9) event is propagated to the entire network.

This prevents duplicate connection attempts from the same peer and maintains
uniqueness within the network.

3. Add Requesting Peer to ConnectionBook: If the requesting peer does not
exist in the ConnectionBook, it is added into the ConnectionBook along with
the ConnectionInit payload with the "WantsToConnect" status.

4. NewPeer Event: Notify the Network: Propagate NewPeer event to the
network with the following payload:

payload: entire/raw payload of the received ConnectionInit event

timestamp: Current UNIX timestamp in milliseconds.

signature: The signed version of the timestamp and payload.

 Please note that we only care about the raw payload of ConnectionInit event. However,
timestamp, signature, and payload fields are necessary for each request for Entrypoint
validations.

5. Handling Peers Asynchronously: Select a random value from a
predefined/configured range (e.g., 0-5000ms) and wait for that many
milliseconds.

As explained in the step 5, peers receiving ConnectionInit event requests
generates random bytes to requesting peers for signing. Receiving too many
ConnectionInit requests from different peers would lead to constant generation of
random bytes causing resource exhaustion. We avoid this problem by generating
random bytes only once at unpredicted time and send it to the all peers registered in
the ConnectionBook. Instead of generating random bytes for each ConnectionInit
sender peer, we generate the random bytes once every X milliseconds (where X is
randomly chosen from the predefined/configured range) for all the peers with
"WantsToConnect" waiting in the ConnectionBook.

6. Random Byte Generation:Generate random bytes of the specified size as
predefined/configured and UNIX timestamp (for timeout).

The main reason for generating and signing a random byte array and including
a UNIX timestamp is to increase the space and time complexity for peers attempting
brute-force attacks using the ConnectionInit events. Increasing the brute-force cost
for the attacker, coupled with rate limiting on victim peers significantly minimizes
the impact of brute-force/resource attacks.

7. Sending ConnectionRequirement: Send a ConnectionRequirement event
request with the generated byte array, difficulty and signature hash to all the
peers with the "WantsToConnect" status in the ConnectionBook.

af://n131

Valid

Not valid Valid

Not valid

Does not exist Does exist

Entrypoint

Verify target peers

Verify ConnectionInit signature

Does already exist in ConnectionBook?

Handle duplicate connection attemptsEnd

Fig. 5: Overview of how a peer handles a NewPeer event upon receiving it.

2.6) Receiving NewPeer Events

When a peer receives a connection request, it tells the entire network about the new peer
by sending out a NewPeer event. This helps to identify and reject any previously
connected peers.

Each peer that receive the "NewPeer" event in the network responsible for performing the
following checks:

0. Entrypoint

1. Verification of target_peers: First, they check if the peer that sent the event is
listed in the target_peers field within the ConnectionInit event, which is part
of the payload of the NewPeer event. If it's not listed there, consider the event
invalid and simply ignore it.

2. Signature Verification of ConnectionInit: If the sending peer is indeed listed
in the target_peers, the receiving peer then verifies the signature (not the
signature of NewPeer event, which is already verified from Entrypoint) of the
ConnectionInit event. If the signature doesn't match or is invalid, consider the
event invalid and ignore it.

3. ConnectionBook Check: Assuming the event passes all the checks above, the
receiving peer then looks to see if the peer trying to establish a connection
already exists in the ConnectionBook. If the peer isn't found there, it indicates
that there's no duplicate with us and the NewPeer validation ends here.

af://n131

4. Handling Duplicate Connection Attempts: However, if the peer does exist in
the ConnectionBook, if target_peers of the payload and target_peers of the
ConnectionBook don't match (which means this peer trying to connect again
which already have connected to this network), we send an AlreadyConnected
event to the network. This event includes the last event sent by this peer stored
in the last_event field in the ConnectionBook. last_event will contain a
recently signed message from this peer, proving that this peer is indeed already
connected to this network, as we have the signature and message from it.

2.7) Receiving ConnectionRequirement Events

When peer sends a ConnectionInit to the peers it wants to connect with, it promptly
receives a ConnectionRequirement event. This event triggers a hashing process on the
requesting peers. This hashing process raises the difficulty and cost of establishing a
connection to the network, making it more challenging for attackers to carry out brute-
force attacks effectively. This effect is further enhanced when combined with rate-limiting
mechanisms on the receiver side.

Peers receiving the ConnectionRequirement event must complete the following steps:

0. Entrypoint

1. Prove Work: Compute the hash of given payload (the byte array generated from
other peer) which aligns with the expected difficulty.

2. Sending ConnectionRequirementResponse: Send the generated data as a
ConnectionRequirementResponse event to the ConnectionRequirement
sender peer.

The payload of the ConnectionRequirementResponse event includes:

payload:

requirement_raw_payload: The raw payload of the received
ConnectionRequirement event. This is used for cross-validation
purposes from the receiver side.

proof: A hash, computed proof-of-work result.

timestamp: Current UNIX timestamp in milliseconds.

signature: The signed version of the timestamp and payload.

Please note that we only care about the requirement_raw_payload and proof fields. However,
timestamp, signature, and payload fields are necessary for each request for Entrypoint
validations.

af://n147
af://n171

ConnectionRequirement

ConnectionRequirement ConnectionRequirement

ConnectionRequirementResponse

ConnectionRequirementResponse ConnectionRequirementResponse

Peer:Y

Peer:X

Peer:Z Peer:T

Fig. 6: A peer (X) who wants to connect to other peers (Y, Z, and T) receives a
ConnectionRequirement event from each of them. It is the responsibility of peer X to

send a ConnectionRequirementResponse back to each peer.

2.8) Receiving ConnectionRequirementResponse Events

Peers receiving ConnectionRequirement event send a
ConnectionRequirementResponse event after completing the expected computing
process. At this stage, the computed hash/proof of the byte array and difficulty (from the
ConnectionRequirement event) is checked for validity.

The handling process is as follows:

0. Entrypoint

1. Timestamp Validation: timestamp in the requirement_raw_payload field is
checked and it is determined whether the proof-of-work has been performed on
a new ConnectionRequirement within the configured limit (e.g., 30 seconds).
If the timestamp is older than the limit, the connection request with the peer is
rejected and it is removed from the ConnectionBook.

2. Payload Verification: The signature within the requirement_raw_payload is
checked. This ensures that the byte array, difficulty and timestamp indeed
belongs to us.

3. Proof Validation: Validate the proof by checking the hash value from proof
field against the byte array and difficulty from the requirement_raw_payload
field.

4. Update of Peer Status: If everything is valid, update peer's status in the
ConnectionBook from "WantsToConnect" into "Connected", fill connected_at
field and start sending KeepAlive events (for every x seconds which can be
configurable) to this peer.

2.9) Receiving AlreadyConnected Events

When a peer attempts to reconnect to an already connected network, an
"AlreadyConnected" event is broadcasted to the entire network by the peers already
connected to it.

af://n171
af://n187

Does not exist

Does exist

Yes

No

ValidInvalid

Entrypoint

Does already in ConnectionBook?

Are we connected to a duplicated peer?

Proof Validation

Exit Disconnect from the duplicated peer

Fig. 7: Overview of how a peer handles a AlreadyConnected event upon receiving it.

Upon receiving this event, each peer applies the following steps:

0. Entrypoint

1. ConnectionBook Check: Check if the mentioned already connected peer is
registered in the ConnectionBook. If not, no further action is required and the
check is complete.

2. Duplication Check: The payload of the AlreadyConnected event contains a
recently signed event from the peer who wishes to join this network. This event
can be either a ConnectionInit or a KeepAlive. Both of these events contain a
field called target_peers, indicating the list of peers this peer is attempting to
connect to (if the event is a ConnectionInit) or already connected to (if the
event is a KeepAlive). We check if the target_peers in the ConnectionBook is
equal to the target_peers data within the AlreadyConnected payload.

The duplication check should be handled as demonstrated below:

 # For KeepAlive events if target_peers don't match, it

means we are connected/connecting to the duplicated peer.

 keep_alive.target_peers !=

connection_book_last_event.target_peers

 # For ConnectionInit events, if target_peers match, it

means wer are connected/connecting to the duplicated peer.

 connection_init.target_peers ==

connection_book_last_event.target_peers

 KeepAlive loop between the connected peers

KeepAliveKeepAlive

Peer:X

Peer:Y

Fig. 8: Overview of the utilization of KeepAlive events between the connected peers.

3. Data Validation: If duplication check returns true(meaning we are connected
or connecting to the duplicated peer), verify the signature within the
AlreadyConnected payload with the target_peers. If the signature is valid,
remove the peer from the ConnectionBook and disconnect from it.

Through this flow duplicated peers are identified and their connections are terminated
before the connection is fully established (at worst, very shortly after it begins), ensuring
network uniquness and mitigating potential issues associated with duplicate connections.

2.10) Handling KeepAlive Events

KeepAlive events are used in timeout/disconnection mechanisms. Peers use these events
to keep track of connected peers and maintain the ConnectionBook.

Each KeepAlive event includes the following payload:

payload:

target_peers: Target addresses of peers which this event was
generated and going to be sent for.

timestamp: Current UNIX timestamp in milliseconds.

signature: The signed version of the timestamp and payload.

Please note that we only require the target_peers field for the ConnectionInit event. However,
timestamp, signature, and payload fields are necessary for each request for Entrypoint
validations.

Using the timestamp and the signature (that is also validated from the Entrypoint)
alongside the target_peers values, KeepAlive events also serve as proof in
AlreadyConnected events.

Peers receiving KeepAlive events execute the following steps:

0. Entrypoint

af://n204

1. ConnectionBook Check: Check if the sender peer exists in the
ConnectionBook. If it doesn't, it means this is an invalid event. No further
action is required and the process ends here.

2. Status Check: If the sender peer exists in the ConnectionBook, check its
status. If it's not "Connected" or "Connecting", it means this is an invalid event.
No further action is required and the process ends here..

3. Handling for 'Connecting' Peers: If status of the peer in ConnectionBook was
"Connecting", that means we were trying to connect to this peer and it has been
accepted the connection (see chapter 2.8 Receiving
ConnectionRequirementResponse Events). Switch the status from 'Connecing'
to 'Connected', fill "connected_at" field and start sending KeepAlive events (for
every x seconds which can be configurable) to this peer. Also, update the
last_event value in the ConnectionBook with the raw payload of the received
KeepAlive event.

4. Handling for 'Connected' Peers If status was "Connected" already, then just
update the last_event value in the ConnectionBook with the raw payload of
the received KeepAlive event.

3) Implementation Notes

Konnektor implementation should provide a configuration interface to users/developers
to adjust various settings like rate limiting, connection timeouts, and payload size and
hash difficulty for ConnectionRequirements for their peers. It is necessary to allow for
such customization so that individuals can increase or decrease the various thresholds as
they see fit.

Additionally, rate limiter in Entrypoint should be optional; allowing users to disable it if
not required. This is especially important in setups where the rate limiter is managed
separately (such as by a load balancer). Therefore, providing the option to turn it off when
unnecessary can be useful for certain people.

4) Summary

In this paper we introduced Konnektor, the first connection protocol designed to ensure
peer uniqueness in decentralized peer-to-peer networks. Through its components such as
digital signatures, ConnectionBook and event-based interactions like ConnectionInit
and NewPeer, Konnektor provides a practical solution for managing peer identities and
connections. By utilizing specialized techniques like requiring connecting peers to
perform computing tasks to increase joining costs, Konnektor effectively raises the barrier
against malicious actors and resource attacks ensuring the integrity and stability of
decentralized networks. Additionally, Konnektor's reliance on digital signatures for
message authentication guarantees the authenticity of peer identities, enhancing trust
and security within the network. Overall, Konnektor provides a complete solution for
maintaining network uniqueness and security setting the stage for robust and resilient
decentralized systems.

af://n233
af://n236
af://n238

5) References

[1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang, "High-
speed high-security signatures", International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 124-142, 2011. Available online: https://ED25519.cr.yp.to
(accessed on 30 March 2024).

[2] M. Jakobsson and A. Juels, "Proofs of work and bread pudding protocols", Secure
information networks, Springer, pp. 258-272, 1999. Available online: https://link.springer.
com/chapter/10.1007/978-0-387-35568-9_18 (accessed on 30 March 2024).

af://n238
https://ed25519.cr.yp.to/
https://link.springer.com/chapter/10.1007/978-0-387-35568-9_18

	1) INTRODUCTION
	2) PROTOCOL DESCRIPTION AND DETAILS
	2.1) Data Signing (Digital Signatures)
	2.2) ConnectionBook
	2.3) The Entrypoint
	2.4) Sending ConnectionInit: Initiating Connections with Other Peers
	2.5) Receiving ConnectionInit Events
	2.6) Receiving NewPeer Events
	2.7) Receiving ConnectionRequirement Events
	2.8) Receiving ConnectionRequirementResponse Events
	2.9) Receiving AlreadyConnected Events
	2.10) Handling KeepAlive Events

	3) Implementation Notes
	4) Summary
	5) References

